What Is Power over Ethernet and How to Add PoE to Your Network?

Andy Chen

With the wide application of VoIP phones, IP cameras, and wireless access points, Power over Ethernet (PoE) has made great strides in recent years. And PoE network is expected to expand rapidly in the future due to the increasing number of IoT applications and smart device deployments and newly ratified standards designed to support more smart devices. In this article, we will provide an introduction covering various aspects of PoE such as PoE wiki, PoE standards, PoE types, PoE classes, and PoE applications.

What Is Power over Ethernet (PoE)?

PoE is a networking technology that can transmit both data and power over one single standard Ethernet cable. It allows us to use network cables such as Cat5/Cat5e/Cat6/Cat6a cables to provide data connections and electric power to wireless access points, IP cameras, VoIP phones, PoE lighting and other powered devices (PDs). With the use of PoE technology, we can easily deliver power to indoor or outdoor PDs without the need to install additional electrical infrastructure or to deploy power outlets at every endpoint.

 

Benefits of PoE Network—Why Use Power over Ethernet?

Besides the above-mentioned benefits, there are several more appealing reasons for adopting PoE in networking.

Time & Cost Saving: By using PoE in the network, we do not need to deploy electrical wiring and outlets for terminal PDs. This will help to save much power cabling cost especially when there are lots of PDs in the network. Furthermore, there is no need to hire a qualified electrician for the PoE network, so you may also save both time and money on electrical installations.

Flexibility: Since Ethernet network cables are easier to deploy than electrical ones, PoE networking allows us to install PDs nearly anywhere rather than near the electrical outlets. This offers a ton of flexibility for setting up and repositioning terminal devices.

Reliability: PoE power comes from a central and universally compatible source rather than a collection of distributed wall adapters. It can be backed up by an uninterruptible power supply (UPS) or controlled to easily disable or reset devices. By doing so, the PDs will run as usual even though Power Sourcing Equipment (PSE) breaks down.

Evolutionary Path of the Power over Ethernet (PoE)

Institute of Electrical and Electronics Engineers (IEEE), Cisco, and the HDBaseT Alliance have released several standards to define PoE. These standards include IEEE 802.3af, IEEE 802.3at, IEEE 802.3bt, Cisco UPOE, and Power over HDBaseT (PoH).

Evolutionary Path of the Power over Ethernet (PoE)

PoE Types

Due to different classification standards, PoE can be divided into different types. Currently, there are 4 PoE types based on IEEE PoE Standard: Type 1(IEEE 802.3af), Type 2(IEEE 802.3at), Type 3(IEEE 802.3bt), and Type 4(IEEE 802.3bt), as shown in the following chart.

PoE Types

PoE vs. PoE+ vs. PoE++ (UPoE )vs. PoH

PoE (IEEE 802.3af), also known as PoE type 1, provides up to 15.4 watts of power per port and is used for devices like IP phones and cameras. PoE+ (IEEE 802.3at), PoE type 2, offers up to 30 watts and powers devices like PTZ cameras. PoE++ or UPoE (IEEE 802.3bt), also referred to as PoE type 3, delivers up to 60 watts and 100 watts, PoE type 4, per port for high-performance devices. Power over HDBaseT (PoH) enables power and data transmission for AV equipment over a single cable. The figure below illustrates the common applications of different PoE types for your reference.

PoE vs. PoE+ vs. PoE++ (UPoE )vs. PoH

PoE Classes

Power over Ethernet (PoE) classes define standardized power levels for different network devices. These classes ensure compatibility between Power Sourcing Equipment (PSE) and Powered Devices (PD).

The classes, ranging from Class 1 to Class 8 as the above chart shows, correspond to specific IEEE standards, indicating the maximum power output of the PSE and the maximum power input of the PD. Let’s delve into more details about each class:

PoE Classes

Class 1 is suitable for low-power devices such as IP phones, voice-over-IP (VoIP) devices, and basic sensors.

Class 2 is intended for devices that require slightly higher power, including wireless access points, small IP cameras, and IP intercom systems.

Class 3 is commonly used for devices that require moderate power, such as larger IP cameras, point-of-sale systems, and access control devices.

Class 4 provides increased power delivery capabilities and is suitable for power-hungry devices like pan-tilt-zoom (PTZ) cameras, video phones, and thin clients.

Class 5 introduces the support for four pairs of Ethernet wires, enabling higher power transmission. It is designed for devices with more demanding power requirements, including advanced PTZ cameras, multi-channel wireless access points, and small LED lighting systems.

Class 6 provides increased power delivery capabilities beyond the previous classes. It can support devices like high-power pan-tilt-zoom cameras, multi-radio wireless access points, and small LCD displays.

Class 7 offers even higher power capabilities introduced with the IEEE 802.3bt standard. It is suitable for devices like high-performance access points, large displays, and thin clients requiring substantial power.

Class 8 represents the highest power class defined by current PoE standards. It is designed for power-hungry devices such as video conferencing systems, advanced lighting systems, and digital signage

It’s important to note that the power levels specified for each class represent the maximum allowable values, and the actual power delivered or consumed by the PD may vary based on its specific power requirements and negotiation with the PSE. Besides, understanding PoE classes allows network administrators to ensure that the power requirements of their devices align with the capabilities of their PoE infrastructure, ensuring proper operation and avoiding potential power supply issues.

Passive PoE vs. Active PoE

Power over Ethernet can also be divided into passive PoE and active PoE in general. Active PoE is the standard PoE which refers to any type of PoE that negotiates the proper voltage between the PSE and the PD device. Passive PoE is a non-standard PoE technology. It can also deliver power over the Ethernet line but without the negotiation process.

How to Add PoE to Your Network?

The PoE supplied in the network generally comes from three different sources: PoE switch, PoE injector, and PoE splitter. The PoE switch is the easiest way to power up the PDs. You only need to run Ethernet cables from a PoE network switch port to the terminal PoE device. A PoE injector is used when there is no PoE switch in the network. It has an external power supply and is responsible to add power to data that is coming from a network switch that is not PoE-capable. PoE splitters also supply power, but they do so by splitting the power from the data and feeding it to a separate input that a non-PoE-compliant device can use. It is commonly used for deploying remote non-PoE devices with no nearby AC outlets in the network.

 

Common FAQs on PoE Network

Q: What is the voltage of Power over Ethernet?

A: Power over Ethernet is injected onto the Ethernet cable at a voltage between 44v and 57v DC, and typically 48v is used. This relatively high voltage allows efficient power transfer along the cable, while still being low enough to be regarded as safe.

Q: What data speed does PoE offer?

A: Generally, PoE can deliver data rates at 10/100/1000Mbps over Cat5, Cat5e and Cat6 cables. Now thanks to the widespread IEEE 802.3bt PoE standard and PoE++ technology, PoE is able to deliver speeds of 2.5 Gbps to 5 Gbps over 100m and reaches 10 Gbps in recent times.

Q: Are there any limitations of PoE network?

A: Yes, PoE network does have some pesky limitations. First, it has a restricted reach of 328 feet (100 meters) which limits the viable locations where users can operate a remote IP-enabled device. Second, a single PSE such as a PoE switch usually connects to multiple PDs. If the PSE broke down, all the PDs will stop working. Therefore, it is important to buy qualified switches from a reliable supplier. In addition, you may also consider connecting the PSE to an uninterruptible power supply system.

Q: What are PoE midspan and PoE endspan?

A: The PoE midspan is usually a PoE injector that serves as an intermediary device between a non-PoE switch and the terminal PoE-capable powered device. A PoE endspan, which is commonly called the PoE network switch, directly connects and supplies both PoE power and data to a PD. PoE endspan provides power over the data pairs, also known as PoE Mode A. PoE midspan provides power using the pins 4-5 and 7-8, also known as PoE Mode B.

Read more →

PoE Switch vs PoE Injector: Why Choose PoE Switch to Build Wireless Networks?

Andy Chen

Power over Ethernet (PoE) technology has transformed the way we construct wireless networks by enabling the simultaneous transmission of data and power over a single Ethernet cable. This innovative approach eliminates the need for additional modifications to the existing Ethernet infrastructure, allowing power devices (PDs) like IP cameras and wireless access points to receive power seamlessly. To gain a comprehensive understanding of PoE networks, you can consult resources such as the Demystifying PoE Network: Features, Standards, Types, and Common FAQs guide. When implementing PoE technology, you have two primary options: PoE switches and PoE injectors. In this article, we will delve into the distinctions between these two alternatives and elucidate why a PoE switch is often the superior choice for constructing wireless networks.

What Is A PoE Switch?

A PoE switch is an Ethernet switch equipped with integrated PoE capabilities, enabling it to deliver power directly to connected devices through the Ethernet cable. This eliminates the need for additional equipment, as you can directly connect PoE-enabled devices like IP cameras and wireless access points to the PoE switch using Ethernet cables. The switch seamlessly provides power to the devices, simplifying the setup process and reducing the complexity of the network infrastructure.

 

What is A PoE Injector?

A PoE injector is a device designed to enable PoE functionality in non-PoE network switches or routers. It acts as an intermediary between the non-PoE switch and the PoE-enabled device. By connecting the injector between these two components, it injects power into the Ethernet cable, delivering power to the device. However, it's important to note that utilizing a PoE injector adds an extra step to the installation process. You need to connect the injector to both the PoE-enabled device and the non-PoE switch, ensuring that power is properly supplied to the device.

Build Wireless Networks: PoE Switch vs PoE Injector

While both PoE switches and PoE injectors have the capability to deliver power over Ethernet cables, there are compelling reasons why a PoE switch is frequently considered the superior option when it comes to constructing wireless networks.

PoE Switches Are More Convenient and Easier to Install

PoE switches offer greater convenience and simplicity compared to PoE injectors when it comes to installation. Unlike PoE injectors, PoE switches eliminate the need for additional equipment, streamlining the installation process and reducing cable clutter. With a PoE switch, powering your devices becomes effortless since the switch itself provides power, eliminating the need for a separate injector. On the other hand, utilizing a PoE injector necessitates an additional installation step, potentially consuming more time and requiring extra equipment.

PoE Switches Are More Cost-Effective

When taking a long-term perspective into account, PoE switches provide superior cost-effectiveness. Although the initial investment in a PoE switch may be higher compared to a PoE injector, the overall cost savings over time are significant. By eliminating the need for additional injectors, you avoid the expense of purchasing and maintaining multiple devices. Moreover, the streamlined installation process and centralized power management offered by PoE switches result in time and effort savings, further contributing to cost efficiency.

PoE Switches Offer Greater Flexibility and Scalability

PoE switches provide enhanced flexibility and scalability compared to PoE injectors. With a PoE switch, you have the capability to connect multiple PoE-enabled devices to a single switch, offering the flexibility to expand your network as required. This allows for efficient network management and reduces the need for additional infrastructure. In contrast, a PoE injector can only provide power to a single device, limiting the scalability of your network and potentially requiring the installation of multiple injectors for additional devices. The ability of PoE switches to accommodate multiple devices makes them a more versatile solution for network expansion.

PoE Switches Are More Efficient for Building Wireless Networks

Deploying a wireless network using PoE switches is a more efficient approach compared to PoE injectors. When constructing an enterprise PoE wireless network, the Power over Ethernet switch serves as a connection point between the router and the Internet. This network configuration establishes seamless network connectivity between PoE wireless network devices and computers that are wired to the switch. The PoE wireless access points are directly connected to the PoE switch, receiving both power and network connectivity. These access points facilitate the connection of multiple wireless devices to the network, effectively extending its coverage and capabilities.

The picture below shows a wireless network in an office. The wireless AP is installed on the ceiling. Cat5e or Cat6 network cable delivers data and power from the nearest PoE switch. Compared with the PoE injector, using a PoE Ethernet switch to power the AP is more efficient for the wireless network because you don't need to worry about the power outlets. In addition, you don't have to specifically buy a Cat5e or Cat6 Ethernet cable for power transmission.

Wireless Network in an Office

PoE Switches Offer Better Management and Control Features

PoE switches provide superior management and control capabilities compared to PoE injectors. They come in a wide range of options, catering to various applications, from simple unmanaged edge switches with a few ports to advanced rack-mounted units with extensive management features. With a PoE switch, you gain the ability to easily monitor and control the power usage of connected devices. This allows you to optimize the performance of your network and reduce energy costs by efficiently managing power allocation.

In contrast, PoE injectors lack these management and control features. They simply deliver power to PoE devices without offering the same level of monitoring and control functionality. Furthermore, PoE switches adhering to the IEEE 802.3af standard provide Gigabit speeds, ensuring both power and data transmission over a single cable. This eliminates the need for additional wiring, power sources, or adapters, streamlining the network setup process.

Endspan PoE Switch

How to Choose a PoE Switch for a Wireless Network?

When planning to choose a PoE switch, we recommend that you should take the following three aspects into consideration.

  • The number of ports of PoE switch, which can affect the number of powered devices that can be connected to a PoE switch.

  • The power budget and PoE Standard of a PoE switch are two important points that cannot be ignored, both have an impact on PoE switch's power consumption.

  • In terms of managed or unmanaged PoE switch, one thing is that when connecting with PoE devices like IP cameras, smart managed PoE switches can detect whether they are PoE-compatible and supply power automatically for the remote-powered devices.

For more detailed information about how to choose a PoE switch, you can click: PoE vs PoE+ vs PoE++ Switch: How to Choose? 

Conclusion

In conclusion, while both PoE switches and PoE injectors can provide power over Ethernet cables, a PoE switch is often the better choice for building wireless networks. PoE switches are more convenient, easier to install, efficient, offer greater flexibility and scalability, and provide better management and control features than PoE injectors. By choosing a PoE switch, you can build a more efficient and effective wireless network that meets your needs and helps you achieve your goals. PoE switch is available in Linovision, where you can find a wide selection of PoE switches. For detailed information and product availability, please visit our website at www.linovision.com or contact us.

Read more →

Troubleshooting Common PoE Errors and Solutions

Andy Chen

Introduction:


In a PoE power supply system, the essential components are the Power Sourcing Equipment (PSE), the Powered Device (PD), and the PoE cables. When issues arise with PoE, it often manifests as the PoE switch failing to provide power, resulting in the powered devices ceasing to function. These failures can stem from various factors, including hardware and software-related issues. This article aims to help you accurately identify the root causes of PoE errors and minimize troubleshooting time. We will discuss three common PoE faults and provide troubleshooting methods for Power over Ethernet.

PoE Error 1: PoE Switch Fails to Provide Power

One of the most frequently encountered PoE errors is when a PoE-powered device (PD) fails to boot up due to issues with PoE components or incorrect configuration commands. Follow the steps below to address this problem:

Step 1: Verify PoE IEEE Standards and Power Modes of PSE and PD

Ensure that both the Power Sourcing Equipment (PSE) and PD comply with PoE IEEE standards. It's important to note that non-standard PoE switches, also known as passive PoE switches, deliver power over Ethernet lines at a fixed voltage, regardless of whether the terminal device supports PoE or not. Improperly prepared passive PoE switches may damage the terminal devices. Additionally, the power modes of PSE and PD can contribute to PoE faults. There are three PoE modes: Alternative A, Alternative B, and 4-pair delivery. If a PD supports only PoE mode B power delivery while the PoE switch is based on Alternative A, they will not work together. Confirm the power supply modes of PSE and PD with the vendor.

Step 2: Check the PoE Cabling

Mismatched Ethernet cables and PoE ports can result in network failures. Furthermore, PoE failures can occur if the cable has hardware faults or fails to meet necessary standards. Therefore, it's highly recommended to ensure that the Ethernet cable supports PoE and is functioning properly before connecting the powered device.

Step 3: Verify Sufficient PoE Power

In theory, the PSE device interface can automatically detect the connected PD. If the power supply is insufficient, the PD will not receive power. Make sure that the power required to run the PDs does not exceed the power budget of the PoE network switch. If a PSE detects that the PD's power class falls within its capacity, it will power on the PD.

Step 4: Check PoE Power Management Configuration

Verify whether the switch interface has automatic PoE power management configuration enabled. If not, you will need to manually deliver PoE power to the connected PDs through the PoE network switch interfaces.

PoE Error 2:  Intermittent Power Loss or Reloads of a PoE PD

What if a functioning PD experiences intermittent power loss or reloads? These situations may arise due to insufficient power supply and poor-quality PoE cables.

Step 1: Check Whether PoE Power Is Sufficient

A PD can power off or reload intermittently if the PSE's output power is insufficient to support all PDs operating at full power consumption. This can cause the PoE switch to fail to provide power. Take IP cameras as an example. During testing of extended functions such as Pan-Tilt-Zoom, heaters, or wipers, the PD may consume significantly more power than during normal operation. If no additional power is available, the camera may get stuck in a continuous boot cycle. To troubleshoot this PoE fault, measure the power requirements of the IP camera during startup and use an appropriate PSE to provide sufficient power.

Step 2: Check the PoE Cabling

If the Ethernet cable used in a PoE link is over 100 meters or has power loss due to the material and resistance of the cable itself, the PD would not get sufficient power, causing issues like network failure or latency. If the cables are not qualified, it will lead to PoE faults as well.

PoE Error 3: Inconsistent Powering of PDs on the Same PSE

If some PDs are receiving power while others connected to the same PSE are not, follow the tips below:

Step 1: Check if PDs Are Available on Other Ports

Determine whether the issue lies with specific ports on the PSE. Disconnect the PoE cable between the Ethernet switch port and the non-powered PDs. If the PDs receive power when connected to other PoE ports, it indicates a problem with specific ports. Verify if the port is shut down or error-disabled using configuration commands. If so, enable PoE functions through the appropriate command.

Step 2: Check the PoE Power

If newly added PDs to PSE ports are not powering on, it may indicate that the PoE switch's power budget is depleted. Ensure that the remaining PoE power in the PSE is equal to or greater than the maximum output required by the connected PDs. Additionally, limit the per-port current to safe levels and consider using additional PSE devices if necessary.

PoE Error 4: PoE Cameras Not Powered

If your camera cannot be powered on while using a PoE Switch or PoE injector, you may follow the tips below to solve your problems.

Step 1: Verify Camera Compatibility with PoE Switch/Injector

Check the compatibility requirements of your camera with the PoE switch or PoE injector. Ensure that the specifications of the PoE switch or injector align with the camera's requirements.

Step 2: Check if the Camera Is Fully Connected to the PoE Switch/PoE Injector

Inspect the PoE port lights on thePoE switch or PoE injector to confirm if the camera is fully connected. If the lights are not illuminated, try plugging the camera into other ports and using a different Ethernet cable. Also, check if the PoE port of the switch is damaged or rusty. You can test this by connecting the camera to other functioning PoE ports.

Step 3: Check if the PoE Module of the Camera Gets Power

If the camera's PoE module is not receiving power, use a DC adapter with the correct output voltage to power the camera. Make sure the DC/AC adapter is available and compatible. Typically, the adapter has an indicator light that indicates the presence of power. Some IP cameras support both DC and AC power supply ports, such as DC12V/2A and AC 24V/3A. Verify that the adapter's specifications match those of the camera.

Conclusion

The four errors mentioned above basically cover the problems that PoE switches are often prone to. If you meet other problems in the process of using PoE switches, you can contact Linovision IT experts for answers. Linovision not only provides you with cost-effective and excellent quality PoE switches but also provides a series of technical support services to ensure your after-sales worry-free.

Read more →

PoE Power Sourcing Equipment (PSE) FAQs

Andy Chen

To enhance comprehension of the PoE network system, it is essential to become acquainted with the PoE devices, as the initially published IEEE802.3af standard categorized Power over Ethernet (PoE) technology into two primary types of power devices: power sourcing equipment (PSE), which supplies power over the Ethernet cable, and powered devices (PD), which receive the power. Presented below is an introduction to power sourcing equipment and a selection of frequently asked questions.

Q: What Is PoE PSE?

A: PoE PSE, an acronym for Power Sourcing Equipment in Power over Ethernet (PoE) systems, represents the equipment responsible for delivering power to PoE PDs (Powered Devices). PoE PSEs detect and categorize the connected PoE devices, monitor power consumption, and allocate power to the devices based on their specific power requirements.

Q: What Are the Differences Between PoE PD and PoE PSE?

A: In a Power over Ethernet (PoE) system, two fundamental elements exist: PoE PD (Powered Device) and PoE PSE (Power Sourcing Equipment).

  • PoE PSE (Power Sourcing Equipment): PoE PSE denotes the equipment supplying power to PoE PDs. It can take the form of a PoE switch or a PoE injector. The PoE PSE injects power into the Ethernet cable, alongside data signals, enabling connected PoE PDs to receive both power and data through a single cable. It serves as the power source for PoE devices.

  • PoE PD (Powered Device): PoE PD refers to the device that draws power from the PoE network infrastructure. It encompasses various device types, such as IP phones, wireless access points, IP cameras, and network switches. The PoE PD consumes power from the PoE PSE, allowing it to operate without the need for a separate power source. Typically, it features an Ethernet input for data communication and a power input to receive power from the PoE PSE.

Q: What Are the Common PoE PSEs?

A: PoE PSE (Power Sourcing Equipment) is vital for providing power to PoE-enabled devices in a network. Although the variety of PoE PSE devices is more limited compared to the diverse range of PoE PDs, there are several commonly deployed types in modern PoE networks. These include PoE switches, PoE injectors, PoE NVRs (Network Video Recorders), and PoE media converters. Here is an overview of these commonly used PoE PSE devices:

 

  • PoE Switch: The PoE network switch integrates PoE injection, allowing it to transmit both data and power over a single Ethernet cable directly to the connected PD.

  • PoE Injector: PoE injector is used to add PoE capability to regular non-PoE network connections. It injects power into the data stream originating from a non-PoE switch and delivers both power and data to the PD via an Ethernet cable.

  • PoE NVR: PoE NVR (Network Video Recorder) incorporates built-in PoE injection. It is commonly employed in IP video surveillance systems, responsible for encoding and processing video data from IP cameras and recording it for storage and remote viewing. The PoE NVR can also supply power to IP cameras via Ethernet cables.

  • PoE Media Converter: PoE media converter facilitates the connection between fiber cabling and a copper network while concurrently providing PoE power to PoE PDs like IP cameras and VoIP phones.

  • PoE Splitter: The PoE splitter is capable of delivering power, but its primary function is to provide power to non-PoE terminal devices. It accomplishes this by splitting power from the data stream and delivering it to the non-PoE device through a separate power supply cable. PoE splitters are advantageous for deploying remote non-PoE devices without nearby AC outlets.

Q: Do I Still Need A PoE Injector if I Have a PoE Switch?

A: If you have a PoE switch, there is no requirement for a PoE injector. When utilizing a standard PoE switch, the power connection is already included, rendering the use of an injector unnecessary. However, if you are utilizing a non-PoE switch, a PoE injector becomes essential for supplying power to PoE PDs like IP cameras, as non-PoE switches do not provide power to PoE devices. It is worth noting that PoE injectors are typically suitable for smaller-scale PoE networks with only a few PDs. For networks with a larger number of PDs, opting for a PoE switch is a more advantageous choice.

Q: Can I Use A PoE Switch with NVR?

A: Yes, you can. A PoE switch not only functions as a hub but also has the capability to provide power to an NVR (Network Video Recorder) without requiring an external power source or additional power cables. This feature significantly reduces installation costs and simplifies cabling complexity, as both power and video can be transmitted over a single Cat5 cable.

Q: Can I Use a Media Converter with PoE Switch?

A: Certainly. It is true that PoE switches have a distance limitation of 100 meters for Ethernet cables. However, when we need to extend beyond this limit, a PoE media converter becomes an excellent solution. A PoE media converter addresses the distance challenge by providing a copper-to-fiber connectivity solution. It serves as the PoE PSE on the copper side, enabling the powering of PDs while extending the network over fiber optic cables to reach greater distances. This allows us to overcome the 100-meter limitation of PoE switches.

Q: Can I Use a PoE Splitter as a PoE Injector?

A: No, PoE splitters and PoE injectors are distinct types of PoE devices that can often lead to confusion. As mentioned earlier, PoE injectors are utilized with non-PoE switches to provide power to PoE devices connected to them. On the other hand, PoE splitters are used in conjunction with PoE PSEs (Power Sourcing Equipment) and separate the data and power signals onto separate cables for non-PoE devices.

To provide a clearer understanding, please refer to the accompanying figure which illustrates the typical applications of PoE splitters and PoE injectors:

Conclusion

With the increasing need for streamlined installations and the recent adoption of standards to support a broader range of smart devices, the adoption of Power over Ethernet (PoE) technology is anticipated to witness significant growth in the future. Consequently, it becomes crucial for us to gain a comprehensive understanding of the aforementioned PoE PSE devices, particularly when making purchasing decisions for establishing PoE networks. This knowledge will enable us to make informed choices and effectively build PoE infrastructure to meet our requirements.

Read more →

What is a PoE Injector and How to Use It?

Andy Chen

Power over Ethernet (PoE) technology allows the transmission of power and data over Ethernet cabling, using devices such as PoE switches, PoE injectors, and PoE splitters. In situations where power outlets are not readily available, PoE injectors offer a convenient solution for installing low-power devices in hard-to-reach areas without significant infrastructure modifications or budget constraints. This article aims to provide a comprehensive understanding of PoE injectors, including their definition, usage in applications, and answers to frequently asked questions.

What is a PoE Injector?

A PoE injector, also known as a midspan or PoE adapter, enables non-PoE compatible switches to power PoE devices by delivering both power and data over a single Ethernet cable.

Benefits of PoE Injectors:

  • Easy installation: Simply connect the PoE injector to the PoE endpoint and an Ethernet switch to provide data and power.
  • Network expansion flexibility: PoE injectors add PoE capability to non-PoE Ethernet switches, extending the network connection distance and providing combined power and data over Ethernet cables for improved connectivity.
  • Cost-effective solution: By utilizing existing Ethernet equipment and cabling infrastructure, implementing a PoE injector solution minimizes additional costs.
How Does a PoE Injector Work?

 

When Ethernet switches or other devices lack PoE functionality but need to support Powered Devices (PDs) like PoE IP cameras, PoE wireless access points (WAPs), or PoE lighting, a PoE injector can supply power and data to these PDs over distances of up to 100 meters. Typically, a PoE injector converts alternating current (AC) into direct current (DC) to power low-voltage PoE devices.

Types of PoE Injectors:

1.Active vs. Passive PoE Injector:

A PoE injector following the IEEE 802.3af, IEEE 802.3at, or IEEE 802.3bt standards is known as an active PoE injector. These injectors require a handshake between the power sending and receiving PoE devices. If the receiving device does not provide the proper acknowledgment, the injector will not supply power, ensuring the safety of PoE devices. Active PoE injectors generally operate at a voltage of 44 to 57 volts DC.

In contrast, a passive PoE injector does not conform to the IEEE standards mentioned above. Passive PoE devices usually operate at voltages ranging from 18 to 48 volts DC. Connecting the wrong voltage may cause permanent electrical damage to the device.

2.12V vs. 24V vs. 48V PoE Injector:

PoE injectors can be categorized based on the output power voltage they provide, such as 12V, 24V, or 48V. When selecting a PoE injector, it is crucial to consider the voltage requirements of the powered PoE devices.

Additionally, PoE injectors can also vary based on port numbers, such as single-port PoE injectors, 2-port PoE injectors, and so on.

How to Use a PoE Injector?

PoE injectors excel at providing data and power to standard-based PoE, PoE+, and PoE++ compliant devices. In practical applications, a PoE injector acts as an intermediary between a non-PoE switch and PoE compliant devices, such as IP cameras or wireless access points, delivering power to them.

Take an IP camera as an example. The following steps illustrate the power supply process:

  1. Test all equipment to ensure the IP camera, PoE injector, and camera management system are functioning properly. Configure video and network settings before mounting the IP camera.
  2. Connect the Ethernet cable from the PoE injector's Power or PoE port to the IP camera's PoE port.
  3. Mount the IP camera in a well-lit area to capture clear images.
  4. Connect another Ethernet cable between the injector's Ethernet or Data port and the Ethernet switch.
  5. Plug the injector's power cord into a local AC electrical outlet.

Read more →